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When | first met Jim ...

in Osaka, the end of 2012,

Jim told me he noticed my paper (2011), including small
vol-of-vol expansion of fractional stochastic volatility.

He praised me for the idea of explaining the volatility skew
“power law" by the “long memory” property of volatility.

| explained, unfortunately, my result implied the long memory
is no use and we need a fractional BM of “short memory”.

Jim was really disappointed, saying something like that short
memory is not realistic, it's nonsense, meaningless ...

| was embarrassed, had to make an excuse for the model (this
was just for a toy example, etc, etc).

Now this is a good memory for me.



The volatility skew power law
A figure from “Volatility is rough” by Gatheral et al. (2014).
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Figure 1.2: The black dots are non-parametric estimates of the S&P ATM

volatility skews as of June 20, 2013; the red curve is the power-law fit ¢)(7) =
A7r—04,



Volatility is rough

Gatheral, Jaisson and Rosenbaum (2014) showed that
e log realized variance increments exhibit a scaling property,

e a simple model
d(log S): = Vidt, dlog Vi = ndW/!

is consistent to the scaling property with H ~ .1 as well as a
stylized fact that the volatility is log normal,

e in particular, both the historical and implied volatilities
suggest the same fractional volatility model H = .1,

e the model provides a good prediction performance,

e and the volatility paths from the model exhibit fake long
memory properties.
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Long memory and short memory

The long memory property of asset return volatility originally
meant a slow decay of the autocorrelation of squared returns.

A mathematical definition is rigid; a stochastic process is of
long memory iff its autocorrelation is not summable.

In the case of fractional Gaussian noise X; = WJ’Z — W(?—I)A’

E[X:\ 1 X: _a¥ k+ 1127 —2k|2H 4+ |k — 12H
[J+kj]—2(\+\ k[ + | <)
~ NPH(Q2H — 1)k?H=2,

so it is of long memory iff H > 1/2.

In contrast, the case H < 1/2 is referred as being of short
memory. It has by no means shorter memory than the case
H = 1/2 that has no memory. The decay is actually slow.

Set free from the long memory spell, goodbye bad memories.



Pricing under rough volatility
Bayer, Friz and Gatheral (2016) elegantly solved a pricing problem
with “information from the big-bang”:
e A fractional Brownian motion W* is not Markov.
e The time t price of a payoff H is E[H|F}] by no-arbitrage.
e The natural filtration of WH is o(W/ — WH;s € (—o0, t]).

Rewrite the model under a martingale measure; for 0 > t

0 0
1
Sp = S exp {/ v/ V,dB, — 2/ Vudu} ,
t t
Vo = Vi eXP(n(WGH - WtH))

= V;(0) exp {ﬁ/te(g —u)H-12qw, — ;77/(0 _ t)zH}

0 0 0
and notice E| / d(log S)ulFi] = / E[V,|Fi]du = / Vi(u)du.
t t t



The rough Bergomi model is Markov

The curve 7 — Vi(t + 1), where V;(0) =

t ~2
V, exp {n/ 0 — )12 — (t — )HV2)aw, + Z—H(O - t)2H}

is called the forward variance curve. When t > s,

Va(6) = Vi(6) exp{ﬁ / {0 — w1 2w,

s
~2

N
0= s~ o= P |
Therefore the co dimensional process

{(Se, Ve(t + ) biso

is Markov with (0,00) x C([0,00)) as its state space.



An extension: log-normal rough volatility models

The rough Bergomi model of BFG can be written as

6 6
1
So = St exp {/ v/ V,dB, — 2/ Vudu} )
t t

Vy = Ve(6) exp {/te k(6, u)dW, — % /ta k(6, u)2du} :

V(0) = V() exp {/t k(6 u)dW, — ;/t k(6, u)2du}

s

for 6 > t > s with k(6, u) = (6 — u)"~1/2 and d(B, W), = pdt.

Notice the forward variance curve follows time-inhomogeneous
Black-Scholes; for each 6,



Log-contract price dynamics

0
E[—2log Sy|F:] = —2log S; + E| / d(log S)ulF¢]
t

0
= -2 Iog5t+/ Vi(u)du
t
t t 0
= —2Iog50—2/ +/ Vudu+/ Vi(u)du.
0 0 t
Therefore, P! = E[—2log Sy|F¢] follows
0
dp! = oot +/ dVe(u)du
51_- t

dS,
Su

(4
_ _zdssf + {/ Vi(u)k(u, t)du} aw,
t t

ds; o opy
=-2— k dW;.
s, + {/t 5y (u, t)du} ¢




Hedging under rough volatility

Theorem. Let P? be a log-contract price process with maturity
0. Then, any square-integrable payoff with maturity 7 < 6 can be
perfectly replicated by a dynamic portfolio of (S, P?).

Proof. Write B = pW + /1 — p2W=. Then, the martingale
representation theorem tells that for any X there exists (H, H')
such that

X = E[nyo]+/ thWt+/ HE:dwit.
0 0

(Use the Clark-Ocone to compute it). We have

AWt = ! {dsf det}

V1-—p? V' ViSt

0 -1
[ [Py ) .dS:
AW, = {/t L k(u, t)du} {dPt rogt }




An example

Consider to hedge a log-contract with maturity 7 by one with
6 > 7. Using again

dpP! = —2d75'-‘ { /
we have

. .ds Py

dPf = -2°2" + {/ Sk )du}th
T@Pt

L dSe [T bk, t)du {dpg dSt}

+252
0 8Pt
St t Ou ( )d St

i k(u,t) du}th,

Consistent to real market data ?

A related ongoing work: Horvath, Jacquier and Tankov.



How to calibrate 7

Monte Carlo — The next talk !
Asymptotic analyses under flat (or specific) forward variances:

Alos et al (2007)

Fukasawa (2011)

Bayer, Friz and Gatheral (2016)
Forde and Zhang (2017)

Jacquier, Pakkanen, Stone

Bayer, Friz, Gulisashvili, Horvath, Stemper

Akahori, Song, Wang

e Funahashi and Kijima (2017) and more.
Asymptotic analyses under a general forward variance curve:

e Fukasawa (2017)

e Garnier and Solna

e El Euch, Fukasawa, Gatheral and Rosenbaum (in preparation)



The ATM implied volatility skew and curvature
El Euch, Fukasawa, Gatheral and Rosenbaum: as 8 — 0,

o4(0,0) = { (3H3 92” \/ / Vi(t + 7)dr + o(62H),

0

70'1-(/( 9) = /{39H_1/2 + 0(02H—1/2)’

ok K0

82 -3 2

gl d)| | =2= g s 4 o(2),
k=0 t

under the rough Bergomi model with |p| < 1 and forward variance
curve of H-Holder, where

_ pil
" T o(H+ 1/2)(H +3/2)°
o + 20%)12 PPiPB(H +3/2,H + 3/2)

4(H +1)(2H 4 1)? (2H +1)?
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An intermediate formula
Let t = 0 for simplicity.

Theorem.

0
aUO(k) 9)

Xo
(X)o

k=0 Vo
as 6 — 0, where
6
Xy —/ v/ Ved W,
0
S 1 S
Vs = Vo(s) exp {/ k(s,u)dW, — 2/ k(s, u)2du} .
0 0
Note: we still need Monte-Carlo, but it is free from p.

This approximation is surprisingly accurate !
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Conclusion

The (log-normal) rough volatility is very attractive
e mathematical structure
e impressive fit to the volatility surface
There are still mysteries...
e why is the slope formula so accurate ?
e why is volatility rough 7
More mathematical questions
e the critical moment 7
e limit distribution of discretization error 7

Research will go on.



Conclusion

The (log-normal) rough volatility is very attractive
e mathematical structure
e impressive fit to the volatility surface
There are still mysteries...
e why is the slope formula so accurate ?
e why is volatility rough 7
More mathematical questions
e the critical moment 7
e limit distribution of discretization error 7

Research will go on.

Congratulations Jim and cheers to your model !!



