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When I first met Jim ...

• in Osaka, the end of 2012,

• Jim told me he noticed my paper (2011), including small
vol-of-vol expansion of fractional stochastic volatility.

• He praised me for the idea of explaining the volatility skew
“power law” by the “long memory” property of volatility.

• I explained, unfortunately, my result implied the long memory
is no use and we need a fractional BM of “short memory”.

• Jim was really disappointed, saying something like that short
memory is not realistic, it’s nonsense, meaningless ...

• I was embarrassed, had to make an excuse for the model (this
was just for a toy example, etc, etc).

Now this is a good memory for me.
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The volatility skew power law
A figure from “Volatility is rough” by Gatheral et al. (2014).

volatility as a time-homogenous process, i.e. a process whose parameters
are independent of price and time.

However, conventional time-homogenous models of volatility such as the
Hull and White, Heston, and SABR models do not fit the volatility surface.
In particular, as shown in Figure 1.2, the observed term structure of at-the-
money (k = 0) volatility skew
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is well-approximated by a power-law function of time to expiry ⌧ . In con-
trast, conventional stochastic volatility models generate a term structure of
at-the-money (ATM) skew that is constant for small ⌧ and behaves as a sum
of decaying exponentials for larger ⌧ .

Figure 1.2: The black dots are non-parametric estimates of the S&P ATM
volatility skews as of June 20, 2013; the red curve is the power-law fit  (⌧) =
A ⌧�0.4.

In Section 3.3 of [25], as an example of the application of his martingale
expansion, Fukasawa shows that a stochastic volatility model where the
volatility is driven by fractional Brownian motion with Hurst exponent H
generates an ATM volatility skew of the form  (⌧) ⇠ ⌧H�1/2, at least for
small ⌧ . This is interesting in and of itself in that it provides a counterex-
ample to the widespread belief that the explosion of the volatility smile as
⌧ ! 0 (as clearly seen in Figures 1.1 and 1.2) implies the presence of jumps
[10]. The main point here is that for a model of the sort analyzed by Fuka-
sawa to generate a volatility surface with a reasonable shape, we would need
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Volatility is rough

Gatheral, Jaisson and Rosenbaum (2014) showed that

• log realized variance increments exhibit a scaling property,

• a simple model

d⟨log S⟩t = Vtdt, d logVt = ηdWH
t

is consistent to the scaling property with H ≈ .1 as well as a
stylized fact that the volatility is log normal,

• in particular, both the historical and implied volatilities
suggest the same fractional volatility model H ≈ .1,

• the model provides a good prediction performance,

• and the volatility paths from the model exhibit fake long
memory properties.



fBm path: H = 0.1, 0.5, 0.9
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Long memory and short memory

• The long memory property of asset return volatility originally
meant a slow decay of the autocorrelation of squared returns.

• A mathematical definition is rigid; a stochastic process is of
long memory iff its autocorrelation is not summable.

• In the case of fractional Gaussian noise Xj = WH
j∆ −WH

(j−1)∆,

E [Xj+kXj ] =
∆2H

2
(|k + 1|2H − 2|k |2H + |k − 1|2H)

∼ ∆2HH(2H − 1)k2H−2,

so it is of long memory iff H > 1/2.

• In contrast, the case H < 1/2 is referred as being of short
memory. It has by no means shorter memory than the case
H = 1/2 that has no memory. The decay is actually slow.

• Set free from the long memory spell, goodbye bad memories.



Pricing under rough volatility

Bayer, Friz and Gatheral (2016) elegantly solved a pricing problem
with “information from the big-bang”:

• A fractional Brownian motion WH is not Markov.

• The time t price of a payoff H is E [H|Ft ] by no-arbitrage.

• The natural filtration of WH is σ(WH
t −WH

s ; s ∈ (−∞, t]).

Rewrite the model under a martingale measure; for θ > t

Sθ = St exp

{∫ θ

t

√
VudBu −

1

2

∫ θ

t
Vudu

}
,

Vθ = Vt exp(η(W
H
θ −WH

t ))

= Vt(θ) exp

{
η̃

∫ θ

t
(θ − u)H−1/2dWu −

η̃2

4H
(θ − t)2H

}

and notice E [

∫ θ

t
d⟨log S⟩u|Ft ] =

∫ θ

t
E [Vu|Ft ]du =

∫ θ

t
Vt(u)du.



The rough Bergomi model is Markov

The curve τ 7→ Vt(t + τ), where Vt(θ) =

Vt exp

{
η̃

∫ t

−∞
(θ − u)H−1/2 − (t − u)H−1/2)dWu +

η̃2

4H
(θ − t)2H

}
is called the forward variance curve. When t > s,

Vt(θ) = Vs(θ) exp

{
η̃

∫ t

s
(θ − u)H−1/2dWu

− η̃2

4H
((θ − s)2H − (θ − t)2H)

}
.

Therefore the ∞ dimensional process

{(St ,Vt(t + ·))}t≥0

is Markov with (0,∞)× C ([0,∞)) as its state space.



An extension: log-normal rough volatility models

The rough Bergomi model of BFG can be written as

Sθ = St exp

{∫ θ

t

√
VudBu −

1

2

∫ θ

t
Vudu

}
,

Vθ = Vt(θ) exp

{∫ θ

t
k(θ, u)dWu −

1

2

∫ θ

t
k(θ, u)2du

}
,

Vt(θ) = Vs(θ) exp

{∫ t

s
k(θ, u)dWu −

1

2

∫ t

s
k(θ, u)2du

}
for θ > t > s with k(θ, u) = η̃(θ − u)H−1/2 and d⟨B,W ⟩t = ρdt.

Notice the forward variance curve follows time-inhomogeneous
Black-Scholes; for each θ,

dVt(θ) = Vt(θ)k(θ, t)dWt , t < θ.



Log-contract price dynamics

E [−2 log Sθ|Ft ] = −2 log St + E [

∫ θ

t
d⟨log S⟩u|Ft ]

= −2 log St +

∫ θ

t
Vt(u)du

= −2 log S0 − 2

∫ t

0

dSu
Su

+

∫ t

0
Vudu +

∫ θ

t
Vt(u)du.

Therefore, Pθ
t = E [−2 log Sθ|Ft ] follows

dPθ
t = −2

dSt
St

+

∫ θ

t
dVt(u)du

= −2
dSt
St

+

{∫ θ

t
Vt(u)k(u, t)du

}
dWt

= −2
dSt
St

+

{∫ θ

t

∂Pu
t

∂u
k(u, t)du

}
dWt .



Hedging under rough volatility
Theorem. Let Pθ be a log-contract price process with maturity
θ. Then, any square-integrable payoff with maturity τ ≤ θ can be
perfectly replicated by a dynamic portfolio of (S ,Pθ).

Proof. Write B = ρW +
√
1− ρ2W⊥. Then, the martingale

representation theorem tells that for any X there exists (H,H⊥)
such that

X = E [X |F0] +

∫ τ

0
HtdWt +

∫ τ

0
H⊥
t dW⊥

t .

(Use the Clark-Ocone to compute it). We have

dW⊥
t =

1√
1− ρ2

{
dSt√
VtSt

− ρdWt

}

dWt =

{∫ θ

t

∂Pu
t

∂u
k(u, t)du

}−1{
dPθ

t + 2
dSt
St

}
.



An example

Consider to hedge a log-contract with maturity τ by one with
θ > τ . Using again

dPθ
t = −2

dSt
St

+

{∫ θ

t

∂Pu
t

∂u
k(u, t)du

}
dWt ,

we have

dPτ
t = −2

dSt
St

+

{∫ τ

t

∂Pu
t

∂u
k(u, t)du

}
dWt

= −2
dSt
St

+

∫ τ
t

∂Pu
t

∂u k(u, t)du∫ θ
t

∂Pu
t

∂u k(u, t)du

{
dPθ

t + 2
dSt
St

}
.

Consistent to real market data ?

A related ongoing work: Horvath, Jacquier and Tankov.



How to calibrate ?
Monte Carlo → The next talk !
Asymptotic analyses under flat (or specific) forward variances:

• Alòs et al (2007)

• Fukasawa (2011)

• Bayer, Friz and Gatheral (2016)

• Forde and Zhang (2017)

• Jacquier, Pakkanen, Stone

• Bayer, Friz, Gulisashvili, Horvath, Stemper

• Akahori, Song, Wang

• Funahashi and Kijima (2017) and more.

Asymptotic analyses under a general forward variance curve:

• Fukasawa (2017)

• Garnier and Solna

• El Euch, Fukasawa, Gatheral and Rosenbaum (in preparation)



The ATM implied volatility skew and curvature
El Euch, Fukasawa, Gatheral and Rosenbaum: as θ → 0,

σt(0, θ) =

{
1 +

(
3κ23
2

− κ4

)
θ2H

}√
1

θ

∫ θ

0
Vt(t + τ)dτ + o(θ2H),

∂

∂k
σt(k , θ)

∣∣∣∣
k=0

= κ3θ
H−1/2 + o(θ2H−1/2),

∂2

∂k2
σt(k, θ)

∣∣∣∣
k=0

= 2
κ4 − 3κ23√

Vt
θ2H−1 + κ3θ

H−1/2 + o(θ2H−1),

under the rough Bergomi model with |ρ| < 1 and forward variance
curve of H-Hölder, where

κ3 =
ρη̃

2(H + 1/2)(H + 3/2)
,

κ4 =
(1 + 2ρ2)η̃2

4(H + 1)(2H + 1)2
+

ρ2η̃2β(H + 3/2,H + 3/2)

(2H + 1)2
.



H = .05, ρ = −.9,
η̃√
2H

= .5, V (0) = .04, θ = 1, flat
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θH < 1.
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H = .05, ρ = −.9,
η̃√
2H

= 2.3, V (0) = .04, θ = 1, flat
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An intermediate formula

Let t = 0 for simplicity.

Theorem.

∂

∂k
σ0(k , θ)

∣∣∣∣
k=0

∼ − ρ√
θ
E

[
Xθ√
⟨X ⟩θ

]

as θ → 0, where

Xθ =

∫ θ

0

√
VsdWs ,

Vs = V0(s) exp

{∫ s

0
k(s, u)dWu −

1

2

∫ s

0
k(s, u)2du

}
.

Note: we still need Monte-Carlo, but it is free from ρ.

This approximation is surprisingly accurate !



H = .07, ρ = −.9,
η̃√
2H

= 1.9, V (0) = .04, flat

θ = 0.05, 0.1, 0.2, 0.5, 1.0
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H = .07, ρ = −.7,
η̃√
2H

= 1.9, V (0) = .04, flat

θ = 0.05, 0.1, 0.2, 0.5, 1.0
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H = .07, ρ = .5,
η̃√
2H

= 1.9, V (0) = .04, flat
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H = .05, ρ = −.9,
η̃√
2H

= 2.3, V (0) = .04, flat

θ = 0.05, 0.1, 0.2, 0.5, 1.0
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H = .07, ρ = −.9,
η̃√
2H

= 1.9, V (0) = .04, sin

θ = 0.05, 0.1, 0.2, 0.5, 1.0
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H = .05, ρ = −.9,
η̃√
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= 2.3, V (0) = .04, sin
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H = .05, ρ = −.9,
η̃√
2H

= 5.0, V (0) = .04, flat

θ = 0.05, 0.1, 0.2, 0.5, 1.0
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H = .45, ρ = −.7,
η̃√
2H

= .9, V (0) = .04, flat

θ = 0.05, 0.1, 0.2, 0.5, 1.0
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H = .01, ρ = −.9,
η̃√
2H

= 1.1, V (0) = .04, flat

θ = 0.05, 0.1, 0.2, 0.5, 1.0
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Conclusion

The (log-normal) rough volatility is very attractive

• mathematical structure

• impressive fit to the volatility surface

There are still mysteries...

• why is the slope formula so accurate ?

• why is volatility rough ?

More mathematical questions

• the critical moment ?

• limit distribution of discretization error ?

•

Research will go on.

Congratulations Jim and cheers to your model !!
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